#### 2022 EAA TIG WELDING WEBINAR

**TIG SPORTAIR WORKSHOPS** 



## Welding Process?

Gas

Mig

Stick

Tig (dc-)

## 4130 CHROME-MOLY



## **NHRA TOP FUEL DRAGSTERS**





## **NHRA FUNNY CARS**





## **VERIZON INDYCAR SERIES**





### **MONSTER ENERGY NASCAR CUP SERIES**





## **Sprints/Midgets**





### **EXPERIMENTAL AIRCRAFT / WATERCRAFT**





4130 Analysis C - .28/.33 MN - .40/.60 P Max. - .025 S Max. - .025 Si - .15/.35 CR - .80/1.10 Ni Max - .25 MO - .15/.25

| Tube Sample |
|-------------|
| C134        |
| MN – 1.51   |
| P011        |
| S004        |
| Si21        |
| CR04        |
| Ni04        |
| MO00        |

| Plate Sample |
|--------------|
| C147         |
| MN89         |
| P012         |
| S009         |
| Si26         |
| CR – 1.29    |
| Ni26         |
| MO82         |



**Mechanical Properties Condition (N)** 

Tensile Strength – 95,000 PSI

Yield Strength - 75,000 PSI

Elongation in 2% – 12% Nominal



Carbon Steel Hydraulic Tubing (1018)

C - .18 Max

MN - .30/.60

P - .050 Max

S - .055



**Mechanical Properties (1018)** 

Tensile Strength - 55,000 PSI Max

Elongation - 40% Minimum





Figure 1: Photograph of failed chassis received for analysis. Side 1 shown.



Figure 2: Photograph of failed chassis received for analysis. Side 2 shown.



Figure 3: Photograph of failed chassis received for analysis. Fracture face shown in photograph.



## **CRASH ANALYSIS-4130**



Figure 5: Macrograph of sectioned Part A.





Figure 6: Mosaic image of sectioned Part A Side 1.



# WHAT IS THE CORRECT TECHNIQUE FOR WELDING?

ASM Reference (Does Not Reference Tubing)

| 4130 Pre-Heating |                |                |
|------------------|----------------|----------------|
| Material         | Material       | Material       |
| Thickness up     | Thickness .60" | Thickness 1.1" |
| to .50" = 300°F  | - 1.0" = 400°F | - 2.0" - 450°F |



## WHAT QUESTIONS SHOULD YOU ASK ABOUT THE SERVICE CONDITIONS OF YOUR PROJECT?





## FAQ'S - 4130 CHROME-MOLY



# CAN I WELD 4130 USING THE TIG PROCESS?





## **DO I NEED TO PRE-HEAT?**





## WHAT FILLER MATERIAL DO I USE?





### FILLER PROPERTIES TENSILE COMPARISON CHART





## FILLER PROPERTIES TENSILE COMPARISON CHART

| 4130: Heat Treated –<br>160,000 P.S.I. With 5%<br>Elongation         |     |  |
|----------------------------------------------------------------------|-----|--|
| RG-45: 45 K.S.I.<br>(Minimum) – 52,400 P.S.I.<br>With 31% Elongation | Gas |  |
| RG-60: 60 K.S.I.<br>(Minimum) – 67,000 P.S.I.<br>With 25% Elongation |     |  |



## WHY DO I NOT USE 4130 FILLER?

4130 filler typically is used for high strength and rigid applications. Due to its hardness or lack of elongation (flexibility), it is **NOT** recommended for sporting applications such as experimental airplanes, race car frames, roll cages, etc.



### WHEN I USE ER80S-D2 FILLER MATERIAL, DO I GIVE UP STRENGTH FOR ELONGATION?





# **DO I HEAT TREAT 4130 AFTER WELDING?**





## **DO I HAVE TO PRE-CLEAN 4130 MATERIAL?**





## **DO I NEED TO BACK-PURGE 4130 MATERIAL?**





## DO I NEED 4130 PLATE FOR SUPPORT GUSSETS?





## SHOULD I COOL THE METAL AFTER I FINISH WELDING?





## **TIG WELD PROCEDURE**

**CUSTOMER:** Hi-Tech Welding Services, Inc.

WELDING SPECIFICATION: Aircraft and Motorsports

#### **GENERAL INFORMATION**

- Remove all oxides and burrs within 1/4" of weld area.
- Acetone wipe to remove all cutting oils.
- Assemble and TIG tack joint in a minimum of four (4) places.
- Preheat to 100°F to 125°F to remove moisture from parent material.
- TIG weld per parameters specified using Lincoln Precision TIG 225 or Invertec V205-T AC/DC with UltraFlex 9 Torch.





## WELD SCHEDULE INFORMATION

**PARENT MATERIAL: 4130** MATERIAL CONDITION: Condition (N) MATERIAL THICKNESS: .035" Wall Thickness FILLER MATERIAL: ER-80S-D2 .035" Dia **JOINT TYPE: (Cluster) Fillet JOINT PREP: Abrasive Clean/Acetone Wipe** JOINT GAP: .000-.010 **AMPERAGE: 0-40 Amps** TORCH TYPE: LA-9 or LW-20 **CUP TYPE: Ceramic** TUNGSTEN SIZE: 1/16" Dia **TORCH GAS: Argon BACK-UP GAS: Argon** TACKING SEQUENCE:4-PLCS (min.)

CURRENT TYPE: D.C.E.N. VOLTAGE: 9-12 Volts CUP SIZE: Gas Lens 7/16" Orifice TUNGSTEN TYPE: 2% Thoriate TUNGSTEN SHAPE: Pointed FLOW RATE: 15-25 C.F.H. FLOW RATE: 5-10 C.F.H.



## **WELD SCHEDULE INFORMATION**

NOTE: Other filler materials recommended for

| TYPE APPLICATION (OPTION FILLER)                                                     | 1 <sup>ST</sup><br>FR80S-D2 |         | 3 <sup>RD</sup><br>312 | ELONGATION |
|--------------------------------------------------------------------------------------|-----------------------------|---------|------------------------|------------|
| Indy/CART cars, Semi-Rigid applications                                              | ER80S-D2                    | ER70S-2 | ER70S-6                | 17%-22%    |
| Experimental Airplanes, NASCAR, Sprints,<br>Midgets, Go-Carts, Motorcycles, Bicycles | ER80S-D2                    | ER70S-2 | ER70S-6                | 17%-22%    |

#### FOOTNOTE

Welding properties change from operator to operator. Techniques such as travel speed, filler type, filler deposition rates, amperage, gas shielding, and arc voltage (distance between tungsten and weld puddle) all have an effect towards heat input, weld strength, and elongation.

**Required Approval for Release: WELD ENGINEER/WYATT SWAIM** 



## Acute angle problem solved...





## **Welding Heat Input**

Amps x Volts x 60 Travel Speed x 1000

**Example:** 

60 Amps x 9 Volts x 60

8 C.P.M x 1000

= 4.05 Joules Per Inch

Heat input controls cooling rates, gain size, notch toughness, heat affected zone (H.A.Z)



## **QUESTIONS** ?????



### NICKEL BASE & STAINLESS ALLOYS WYATT SWAIM



## SELECT AN APPLICATION

I.E. HEADERS, TAIL PIPES, EXHAUST PARTS



## **SERVICE CONDITIONS WANTED?**

| Cost?                           |
|---------------------------------|
| Corrosion Resistance?           |
| Heat Resistance?                |
| Machinability?                  |
| Strength?                       |
| Formability?                    |
| Weldability?                    |
| Repair and modify in the field? |



## **INCONEL VS. STAINLESS**

|               | Ni   | Cr   | C   | Elongation |
|---------------|------|------|-----|------------|
| Inconel 625   | 61.0 | 21.5 | .05 | 30%        |
| 321 Stainless | 13.0 | 20.0 | .08 | 55%        |
| 304 Stainless | 11.0 | 20.0 | .08 | 55%        |
| 316 Stainless | 14.0 | 18.0 | .08 | 50%        |











## STAINLESS STEEL SELECTION CHART

| 304 Stainless Steel | <u>Usage</u><br>General<br>Fabrication                                                                          | Low temperature<br>stabilized<br>applications | Sustained<br>temperature<br>under 900<br>degrees F |  |
|---------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------|--|
| 321 Stainless Steel | Usage<br>For hotter sustained temperatures<br>(above 900 degrees) to avoid<br>"chromium carbide precipitation". |                                               |                                                    |  |



## STAINLESS STEEL FILLER MATERIAL RECOMMENDATIONS

| 321  | Stainless        |
|------|------------------|
| 347  | Stainless Filler |
| 304  | Stainless        |
| 3081 | Stainless Filler |



## **AVOIDING CHROMIUM OXIDES**

Always use Argon gas

Always purge (argon) backside of welds

Utilize the Tig process





## **QUESTIONS** ?????



**THANKS FOR** ATTENDING CONTACT INFORMATION 620-447-3446

